Edge-Unfolding Medial Axis Polyhedra

نویسنده

  • Joseph O’Rourke
چکیده

It is shown that a convex medial axis polyhedron has two distinct edge unfoldings: cuttings along edges that unfold the surface to a simple planar polygon. One of these unfoldings is a generalization of the point source unfolding, and is easily established to avoid overlap. The other is a novel unfolding that requires a more complex argument to establish nonoverlap, and might generalize.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unfolding and Reconstructing Polyhedra

This thesis covers work on two topics: unfolding polyhedra into the plane and reconstructing polyhedra from partial information. For each topic, we describe previous work in the area and present an array of new research and results. Our work on unfolding is motivated by the problem of characterizing precisely when overlaps will occur when a polyhedron is cut along edges and unfolded. By contras...

متن کامل

Edge-Unfolding Orthogonal Polyhedra is Strongly NP-Complete

We prove that it is strongly NP-complete to decide whether a given orthogonal polyhedron has a (nonoverlapping) edge unfolding. The result holds even when the polyhedron is topologically convex, i.e., is homeomorphic to a sphere, has faces that are homeomorphic to disks, and where every two faces share at most one edge.

متن کامل

Zipper Unfolding of Domes and Prismoids

We study Hamiltonian unfolding—cutting a convex polyhedron along a Hamiltonian path of edges to unfold it without overlap—of two classes of polyhedra. Such unfoldings could be implemented by a single zipper, so they are also known as zipper edge unfoldings. First we consider domes, which are simple convex polyhedra. We find a family of domes whose graphs are Hamiltonian, yet any Hamiltonian unf...

متن کامل

Refold rigidity of convex polyhedra

We show that every convex polyhedron may be unfolded to one planar piece, and then refolded to a different convex polyhedron. If the unfolding is restricted to cut only edges of the polyhedron, we identify several polyhedra that are “edge-unfold rigid” in the sense that each of their unfoldings may only fold back to the original. For example, each of the 43,380 edge unfoldings of a dodecahedron...

متن کامل

Skeleton computation of orthogonal polyhedra

Skeletons are powerful geometric abstractions that provide useful representations for a number of geometric operations. The straight skeleton has a lower combinatorial complexity compared with the medial axis. Moreover, while the medial axis of a polyhedron is composed of quadric surfaces the straight skeleton just consist of planar faces. Although there exist several methods to compute the str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008